Physics with Astrophysics (MPhys)

the United Kingdom

For more information about Physics with Astrophysics at University of Kent, please visit the webpage using the button above.

The award
MPhys

How long you will study
4 Years

Domestic course fees
find out

How you will study
find out

Course starts
September

International course fees
find out

All study options

About Physics with Astrophysics at University of Kent

The School of Physical Sciences is a dynamic multidisciplinary department, achieving national and international excellence in physics, chemistry, and forensic science. We offer a broad training in physics, and provide an ideal preparation for a wide range of careers in the manufacturing and service industries as well as education, the media and the financial sector. This programme is fully accredited by Institute of Physics (IOP). Our degree programme Astrophysics emphasises the underlying physical concepts of the stars and galaxies, which make up the Universe. This provides an understanding of the physical nature of bodies and processes in space and the instruments and techniques used in modern astronomical research. In your first year, you get to grips with the broad knowledge base on which physical science is built, including electricity and light, mathematics, mechanics, thermodynamics and matter. You also develop your experimental, computational, statistical and analytical skills. Your second and third years include a broad range of modules such as quantum mechanics, solid state, atomic, nuclear and particle physics, electromagnetism and optics, and mathematical techniques as well as the mulitwavelength universe exoplanets and stars, galaxies and the universe. The final year of the MPhys programme brings your core knowledge and skills up to an advanced level. This stage concentrates on the in-depth training required for a science-based career, including the practical aspects of the research processes and a major research project in the School's Astrophysics and Planetary Science research group. Study resources The Beacon Observatory provides a fully automised system with both optical telescope and radio telescope capability. It includes a 17" astrograph from Plane Wave Instruments with a 4k x 4k CCD and a BVRIHa filter set, as well as a 90-frames-per-second camera. You have access to first-class research facilities in new laboratories. These are equipped with state-of-the-art equipment, including a full characterisation suite for materials, including: three powder diffractometersa single crystal diffractometerx-ray fluorescenceinstruments to measure magnetic and transport propertiesa Raman spectrometerscanning electron microscopesoptical coherence tomography imaging equipmentoptical spectrum analyserstwo-stage light gas gun for impact studies. The University is a member of the South East Physics Network (SEPnet), which offers a competitive programme of summer internships to Stage 2 and 3 undergraduates. Extra activities The School of Physical Sciences is home to an international scientific community of physics and astronomy, chemistry and forensic science students. Numerous formal and informal opportunities for discussion make it easy to participate in the academic life of the School. All students have an academic adviser and we also run a peer mentoring scheme. You are encouraged to participate in conferences and professional events to build up your knowledge of the science community and enhance your professional development. The School also works collaboratively with business partners, which allows you to see how our research influences current practice. You can also take part in: the School’s Physical Sciences Colloquia, a popular series of talks given by internal and external experts on relevant and current topicsthe student-run Physics and Space Societies, which organise talks with top industry professionals, practical demonstrations and social events Professional networks The School of Physical Sciences also has links with: the Home Officeoptical laboratorieslocal health authoritiesaerospace/defence industriessoftware and engineering companies Interpol.

Teaching is by lectures, practical classes, tutorials and workshops. You have an average of nine one-hour lectures, one or two days of practical or project work and a number of workshops each week. The practical modules include specific study skills in physics and general communication skills. In the MPhys final year, you work with a member of staff on an experimental or computing project.

Assessment is by written examinations at the end of each year and by continuous assessment of practical classes and other written assignments. Your final degree result is made up of a combined mark from the Stage 2/3/4 assessments with a weighting of 20/30/50.

Please note that there are degree thresholds at stages 2 and 3 that you will be required to pass in order to continue onto the next stages.

Knowledge and understanding

MPhys students gain a systematic understanding of most fundamental laws and principles of physics and astrophysics, along with their application to a variety of areas in physics and/or astrophysics, some of which are at the forefront of the discipline.

The areas covered include:

  • Electromagnetism.
  • Classical and quantum mechanics.
  • Statistical physics and thermodynamics.
  • Wave phenomena and the properties of matter as fundamental aspects.
  • Nuclear and particle physics.
  • Condensed matter physics.
  • Materials.
  • Plasmas and fluids.

You also gain an understanding of the theory and practice of astrophysics, and of those aspects upon which it depends – a knowledge of key physics, the use of electronic data processing and analysis, and modern day mathematical and computational tools.

Intellectual Skills

You gain intellectual skills in how to:

  • Identify relevant principles and laws when dealing with problems and make approximations necessary to obtain solutions.
  • Solve problems in physics using appropriate mathematical tools.
  • Execute an experiment or investigation, analyse the results and draw valid conclusions.
  • Evaluate the level of uncertainty in experimental results and compare the results to expected outcomes, theoretical predictions or published data in order to evaluate their significance.
  • Use mathematical techniques and analysis to model physical phenomena.
  • An ability to comment critically on how telescopes (operating at various wavelengths) are designed, their principles of operation, and their use in astronomy and astrophysics research.

As an MPhys student, you also develop:

  • An ability to solve advanced problems in physics using mathematical tools, to translate problems into mathematical statements and apply their knowledge to obtain order of magnitude or more precise solutions as appropriate.
  • An ability to interpret mathematical descriptions of physical phenomena.
  • An ability to plan an experiment or investigation under supervision and to understand the significance of error analysis.
  • A working knowledge of a variety of experimental, mathematical and/or computational techniques applicable to current research within physics.
  • An enhanced ability to work within in the astrophysics area that is well matched to the frontiers of knowledge, the science drivers that underpin government funded research and the commercial activity that provides hardware or software solutions to challenging scientific problems in these fields.

Subject-specific skills

You gain subject-specific skills in:

  • The use of communications and IT packages for the retrieval of information and analysis of data.
  • How to present and interpret information graphically.
  • the ability to communicate scientific information, in particular to produce clear and accurate scientific reports.
  • The use of laboratory apparatus and techniques, including aspects of health and safety.
  • The systematic and reliable recording of experimental data.
  • An ability to make use of appropriate texts, research-based materials or other learning resources as part of managing your own learning.

As an MPhys student, you also gain:

  • IT skills which show fluency at the level needed for project work, such as familiarity with a programming language, simulation software or the use of mathematical packages for manipulation and numerical solution of equations.
  • An ability to communicate complex scientific ideas, the conclusion of an experiment, investigation or project concisely, accurately and informatively.
  • Experimental skills showing the competent use of specialised equipment, the ability to identify appropriate pieces of equipment and to master new techniques.
  • An ability to make use of research articles and other primary sources.

Transferable skills

You gain transferable skills in:

  • Problem-solving including the ability to formulate problems in precise terms, identify key issues and have the confidence to try different approaches.
  • Independent investigative skills including the use of textbooks, other literature, databases and interaction with colleagues.
  • Communication skills when dealing with surprising ideas and difficult concepts, including listening carefully, reading demanding texts and presenting complex information in a clear and concise manner.
  • Analytical skills including the ability to manipulate precise and intricate ideas, construct logical arguments, use technical language correctly and pay attention to detail.
  • Personal skills including the ability to work independently, use initiative, organise your time to meet deadlines and interact constructively with other people.

The programme aims to:

  • Foster an enthusiasm for physics by exploring the ways in which it is core to our understanding of nature and fundamental to many other scientific disciplines.
  • Develop an appreciation of the importance of astrophysics and its role in understanding how our universe came about and how it continues to exist and develop.
  • To meet the needs of those students who wish to enter careers as professional research physicists and/or astrophysicists in industrial, university or other settings.
  • To enhance an appreciation of the application of physics in different contexts.
  • Foster an enthusiasm for astrophysics and an appreciation of its application in current research.
  • Involve students in a stimulating and satisfying experience of learning within a research-led environment.
  • Motivate and support a wide range of students in their endeavours to realise their academic potential.
  • Provide students with a balanced foundation of physics knowledge and practical skills and an understanding of scientific methodology.
  • Enable students to undertake and report on an experimental and/or theoretical investigation and base this in part on an extended research project.
  • Develop in students a range of transferable skills of general value.
  • Enable students to apply their skills and understanding to the solution of theoretical and practical problems.
  • Provide students with a knowledge base that allows them to progress into more specialised areas of physics and space science, or into multi-disciplinary areas involving physical principles; the MPhys is particularly useful for those wishing to undertake physics research.
  • Generate in students an appreciation of the importance of physics in the industrial, economic, environmental and social contexts.

Study options for this course

  • The award How you will study How long you will study Course starts Domestic course fees International course fees
  • The awardMPhysHow you will study find outHow long you will study4 years
    Course startsSeptemberDomestic course fees find outInternational course fees find out

Notes about fees for this course

Full Time UK/EU: TBC EUR | Full Time Overseas: TBC EUR

Entry requirements

Contact University of Kent to find course entry requirements.

What students think about University of Kent

    Inspirational teaching - Patrique Tanque from Brazil is studying for a BSc in Forensic Chemistry.

    “Choosing Kent was an easy decision. The forensic programmes are ranked among the best in the UK and have a high graduate employment rate.

    “The teachers bring fresh ideas and up-to-date materials from real cases to enrich the lectures. They are keen to help out and always make sure we are getting plenty of support.

    “I was very fortunate to be awarded an International Scholarship, which meant I could dedicate myself to my studies.”

    Academic excellence - Stephanie Bourgeois from France is studying for a BSc in Biochemistry.

    “I like the approach to teaching here; academics are happy to answer questions and to interact with students. I find the lectures very motivational, they pique your curiosity and for me the exciting bit is going to the library and pursuing the things you are interested in.

    “The lecturers at Kent are excellent. You get to know them well and, as you move through the course, they are able to guide you towards projects, ideas or career paths that they think you will like.”

    Specialist research - Sally Gao from China is studying for a PhD in Electronic Engineering.

    “I have been very lucky with my supervisor, Professor Yong Yan, who is a world-class expert and the first IEEE Fellow in the UK in instrumentation and measurement.

    “Professor Yong Yan has helped me to become a better researcher. I am inspired by his novel ideas and constructive suggestions. Under his supervision, my confidence has grown through such milestones as my first set of experiments, writing my first research paper and attending my first conference.”

Videos from University of Kent

Location of University of Kent

University of Kent main campus is shown on the map below:

Read more about studying in the United Kingdom

Join Our Newsletter

×

Sign up to StudyLink.com today for free and be the first to hear about any new study abroad opportunities

Subscribe Now